Nitrogen constraints on terrestrial carbon uptake: Implications for the global carbon-climate feedback

نویسندگان

  • Ying-Ping Wang
  • Benjamin Z. Houlton
چکیده

[1] Carbon-climate feedback has been identified as one of the key areas of synthesis for the next Inter-governmental Panel on Climate Change (IPCC); however, most of the models on which the IPCC will rely are yet to consider vital interactions between nitrogen (N) and carbon (C) cycles. A major impediment to including N limitation in model predictions has been the lack of constraint to rates of N fixation worldwide. Here we use a theoretical framework that considers interactions of C and nutrients to estimate rates of terrestrial N fixation, and thereby examining how the constraints of N on land C uptake and global warming. We show that most global models without nutrient limitations significantly overestimated land C uptake, thus underestimating both the pace and magnitude of the predicted global warming. We suggest that the next IPCC assessment should consider nutrient constraints on carbon-climate feedback and the pace of global warming. Citation: Wang, Y.-P., and B. Z. Houlton (2009), Nitrogen constraints on terrestrial carbon uptake: Implications for the global carbon-climate feedback, Geophys. Res. Lett., 36, L24403, doi:10.1029/2009GL041009.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consequences of Considering Carbon–Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle

The impact of carbon–nitrogen dynamics in terrestrial ecosystems on the interaction between the carbon cycle and climate is studied using an earth system model of intermediate complexity, the MIT Integrated Global Systems Model (IGSM). Numerical simulations were carried out with two versions of the IGSM’s Terrestrial Ecosystems Model, one with and one without carbon–nitrogen dynamics. Simulatio...

متن کامل

MIT Joint Program on the Science and Policy of Global Change Consequences of Considering Carbon/Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle

A number of observational studies indicate that carbon sequestration by terrestrial ecosystems in a world with an atmosphere richer in carbon dioxide and a warmer climate depends on the interactions between the carbon and nitrogen cycles. However, most terrestrial ecosystem models being used in climate-change assessments do not take into account these interactions. Here we explore how carbon/ni...

متن کامل

Terrestrial nitrogen-carbon cycle interactions at the global scale.

Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitroge...

متن کامل

Warming climate extends dryness-controlled areas of terrestrial carbon sequestration

At biome-scale, terrestrial carbon uptake is controlled mainly by weather variability. Observational data from a global monitoring network indicate that the sensitivity of terrestrial carbon sequestration to mean annual temperature (T) breaks down at a threshold value of 16°C, above which terrestrial CO₂ fluxes are controlled by dryness rather than temperature. Here we show that since 1948 warm...

متن کامل

What determines the magnitude of carbon cycle-climate feedbacks?

Positive feedbacks between climate change and the carbon cycle have the potential to amplify the growth of atmospheric carbon dioxide and accelerate future climate warming. However, both the magnitude of and the processes which drive future carbon cycleclimate feedbacks remain highly uncertain. In this study, we use a coupled climate-carbon model to investigate how the response of vegetation ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009